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Lorentz-Invariant Pseudo-Differential
Wave Equations
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We define in a consistent way nonlocal pseudo-differenti al operators acting on
a space of analytic functionals. We discuss the relation of our method to other
definitions for nonlocal operators. We show how to solve homogeneous and
inhomogeneous equations associated with nonlocal pseudo-different ial operators,
and we extend the formalism to d-dimensional space-time solving, in particular,
the fractional wave and Klein±Gordon equations. We also study in this context
the nonlocal equations obtained from effective QED when integrating over the
fermionic degrees of freedom.

1. INTRODUCTION

Interest in nonlocal field theories has always been present in theoretical

physics, associated with several different motivations. Wheeler and Feynman
[1] considered a description of the interaction between charged particles

where the electromagnetic field does not appear as a dynamical variable

(action at a distance).

More recently, efforts have been made to use nonlocal theories in connec-

tion with the understanding of quark confinement and anomalies [2, 3] and
in string theories containing nonlocal vertices [4, 5].

Besides the possibility of nonlocal interactions, a field theory can also

display nonlocal kinetic terms.

Before renormalization theory became well established, the possibility

was considered of formulating finite theories by means of nonlocal kinetic
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Lagrangians. Pais and Uhlembeck [6] were one of the first to analyze nonlocal

theories in this context.

The analytic regularization method introduced in ref. 7 can be thought
of as associated to nonlocal kinetic terms in the Lagrangian, specifically to

fractional wave and Klein±Gordon equations.

More recently, this type of nonlocality has arisen in effective field

theories when integrating over some degrees of freedom in an underlying

local field theory [8±10] and in the context of bosonization in three dimen-

sions [11±14].
At a classical level, nonlocal equations containing arbitrary powers of

the D’ Alambertian (;N) have been studied in ref. 15. In this reference a

nontrivial relation between the number of dimensions and the power of the

operator was established in order to satisfy the Huygens principle [16]. In

particular, in 2 1 1 dimensions, the usual wave equation leads to a Green

function that does not satisfy Huygens’ principle, while a nonlocal equation
with N1/2 does satisfy this principle (see also ref. 17). It is not by chance that the

pseudo-differential operator N1/2 also appears in the process of bozonization in

2 1 1 dimensions. In refs. 11 and 12 a mapping was established between

Dirac’ s kinetic term and bosonic terms involving N1/2. In ref. 18 it is shown

how similar terms appear when (3 1 1)-dimensional QED is projected to a
physical plane. The kinetic term obtained F m n N 2 1/2 F m n , reproduces correctly

the r 2 1 Coulomb potential instead of the usual logarithmic behavior of 2 1
1 QED. This fact was first noticed in ref. 16.

Also, in ref. 19, a fractional generalized Fokker±Planck±Kolmogorov

equation is proposed to describe anomalous transport in Hamiltonian systems,

and in refs. 20 and 21 some particular Green functions for fractional diffusion
and fractional wave equations were obtained.

In all these references, under justified physical assumptions, the nonlocal

kinetic operator definition includes an a priori prescription in a way that

parallels the fractional derivative defined in ref. 22. In that reference, the

prescription used for the fractional operator leads to a Green function having

a prescription which is uniquely determined, that is, the usual freedom to
choose the Green functions for a given differential operator is absent in that

approach. In other words, using that approach, the nonlocal homogeneous

equations have no nontrivial solutions.

The problem of defining nonlocal pseudo-differential operators having

nontrivial solutions to the associated homogeneous equations has not been

considered in the traditional literature.
In refs. 17 and 23, solutions to some particular equations were proposed

on physical grounds.

In this paper, we present a mathematical approach defining in a consistent

way general pseudo-differential operators having a nontrivial set of solutions
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to the associated nonlocal homogeneous equations. The associated Green

functions, as occurs in the case of the local operators, will not be determined

a priori.
This kind of extension is desirable, as the solutions to the homogeneous

equations are the starting point to canonically quantize nonlocal field theories

[23, 24] such as those obtained in the context of nonlocal 3D bosonization.

In effective theories in± in vacuum expectation values obey equations

where the derived nonlocal operators are defined by means of a retarded

prescription. Here again the effective homogeneous equations have no non-
trivial solutions.

By using our approach, we will write nonlocal effective QED field

equations in a way similar to Maxwell’ s equations, where there is no a priori
prescription to define the differential operators. In particular, we will show

a mode expansion for these equations. The prescription to compute the Green

function will be obtained from causality a posteriori.
In Section 2, we define the functional spaces in which we build up the

framework to describe the pseudo-differential operators. In these spaces we

introduce the representation of analytic functionals as ª ultradistributionsº

[25, 26], a convenient way to handle and operate with the usual Green

functions of quantum field theories. In Section 3, the relationship between
fractional pseudo-differential operators and the fractional derivatives of ref.

8 is exhibited.

In Section 4, we extend our developments to space-time, by defining

nonlocal functions of N. Fractional wave and Klein±Gordon equations are

introduced, and solutions for the respective homogeneous equations are given.

In Section 5, we apply our method to the nonlocal effective theory of electro-
magnetism obtained when integrating over the fermionic degrees of freedom

[27, 10].

Finally, Section 6 is devoted to a discussion of the developments and

results of the paper.

2. FUNCTIONAL SPACES

We will start with the space z of entire analytic test functions w (k),

rapidly decreasing in any horizontal band. We will call ª ultranalyticº any

function w (k) P z . They are Fourier transforms of the space z Ãof all C `

functions w (x) such that exp(q ) x ) Dp w (x)) is bounded in R for any q and p.

In view of the latter property, z . Z, where Z is the space of Fourier
transforms of K (C ` functions on a compact set) (ref. 22, ch. 2, §1.1).

The dual of z is the space z 8 of linear functionals defined on z . In z 8
we can represent the propagators of a quantum field theory as analytic

functionals, with the physical properties that are expected from them [28].
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The general form of an analytic functional is

c ( w ) 5 # L

c (k) w (k) dk (1)

where c (k) is an analytic function, and the line L can be deformed as long

as no singularity of c (k) is crossed. L can be an open line or a closed loop.

Not only L can be deformed without altering c ( w ). Also, the structure

of singularities of c (k) can be modified. For example, when c (k) 5 (k 2 t ) 2 1,
the development (k 2 t ) 2 1 5 ( n t nk 2 n 2 1 allows the pole at k 5 t to be

represented by a series of multipoles located at the origin. This fact is closely

related to the expansion of the analytic functional d (k 2 t ) as a series of

d (n)(k) (ref. 22, ch. 2, §1.4). We can see then that an analytic functional can

be expressed in more than one way.

We are going to use systematically the following representation [25, 26]:

c ( w ) 5 # G

dk c (k) w (k) ( c P z 8, w P z ) (2)

where c (k) is analytic in {k P C: ) Im k ) . r } and c (k)/k r is bounded

continuous in {k P C: ) Im k ) $ r }, r depending on c (k), r P N (N 5 set
of entire numbers).

The path G runs from 2 ` to 1 ` along Im k . r and from 1 ` to 2 `
along Im k , 2 r .

Note that Eq. (2) tell us that c (k) and c (k) 1 a(k), where a(k) is an

entire analytic function, represent one and the same functional c ( w ); in

particular, the zero functional corresponds to c (k) 5 a(k). In this representa-
tion, the unit functional can be given by

c (k) 5 1±2 Sg(Im k) (3)

The natural definition for the Fourier transform of a functional c P z 8
is given by the functional c Ã5 ^ c acting over the space of test functions

w Ã5 ^ w P z Ãaccording to

c Ã( w Ã) 5 ^ c (^ w ) 5 2 p c ( w ) (4)

For an ultradistribution represented by (2)

c Ã( w Ã) 5 # G

dk c (k) #
1 `

2 `

dx w Ã(x)eikx

5 #
1 `

2 `

dx c Ã(x) w Ã(x) (5)
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where

c Ã(x) 5 # G

dk c (k)eikx (6)

The ª densityº c Ã(x) is not altered if we add a(k) to c (k). The unit functional,

Eq. (3), is associated with the density c Ã(x) 5 2 p d (x).

3. PSEUDO-DIFFERENTIAL OPERATORS

A commonly used example of nonlocal differential operator is given by

the fractional derivative, as defined in ref. 22 (Ch. 1, §5.5):

d a

dx a g+ 5
x 2 a 2 1

1

G ( 2 a )
* g+ (7)

which is valid over functions g+ that vanish for x , 0. This definition has
the property

d b

dx b 1 d a

dx a g+ 2 5
d a 1 b

dx a 1 b g+ (8)

implying that the unique solution to the homogeneous equation (d a /dx a )h+

5 0 is the trivial one, h+ [ 0 (applying d 2 a /dx 2 a to both members). Corres-
pondingly, the equation (d a /dx a )g+ 5 d (x) leads to a uniquely defined ª Green

functionº g+ 5 [x a 2 1
1 / G ( a )] * d (x).

Another definition of fractional derivative operator can be given by

d a

dx a g 2 5
x 2 a 2 1

2

G ( 2 a )
* g 2 (9)

valid over functions g 2 that vanish for x . 0. Here again we have a property

similar to (8); the Green function is uniquely defined to be [x a 2 1
2 / G ( a )] *

d (x). We stress that these fractional derivatives have no nontrivial solution

to the associated homogeneous equations.
On the other hand, now we will define general pseudo-differential opera-

tors, having a nontrivial set of solutions to the associated nonlocal homoge-

neous equations, and (as a consequence) the associated Green functions, as

occurs in the case of the local operators, will not be determined a priori.
This kind of extension provides a formal base for nonlocal 3D bosonization

as a theory in Minkowski space; also, we will be able to interpret nonlocal
effective field equations in a similar way to the local case (see Section 5).

In order to work properly with some nonlocal pseudo-differential opera-

tors we are going to introduce the following operation on the functionals c Ã

in (2).
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Let us consider a function f (k) such that f (k) is analytic in {k P
C/ ) Im k ) . b } and f (k)/k b is bounded continuous in {k P C/ ) Im k ) $ b }, b
depends on f (k), b P N.

Then we define

f c Ã( w Ã) 5 #
1 `

2 ` F f 1 2 i
d

dx 2 c Ã(x) G w Ã(x) (10)

f 1 2 i
d

dx 2 c Ã(x) 5 # G

dk f (k) c (k)eikx (11)

where the path G runs from 2 ` to 1 ` along Im k . b 1 r and from 1 `
to 2 ` along Im k , 2 b 2 r .

We know that the functional c Ã( w Ã) does not change when we add an

arbitrary entire function a(k) to c (k). However, such an addition in Eq. (11)

gives rise to a new term

A(x) 5 # G

dk f (k)a(k)eikx (12)

When f (z) is an entire function (for example, in the case of polynomial

functions of the derivative operator), A(x) [ 0.

If f (z) 5 z 2 1, f ( 2 i d/dx) is the inverse of the derivative (an integration).

In this case, Eq. (11) gives a primitive of c Ã(x); using Cauchy’ s theorem, the

additional term (12) is A(x) 5 2 2 p ia(0). Of course, an integration should

give a primitive plus an arbitrary constant.
Analogously, a double (iterated) integration with f (z) 5 z 2 2 gives a

primitive plus

A(x) 5 # L

dk
a(k)

k2 eikx 5 g 1 d x

where g and d are arbitrary constants. It is understandable that a more complex
structure of singularities of f (z) gives rise to a more complicated A(x).

To solve some pseudo-differential equations, we can work directly with

the functions c (k) representing the analytic functional c in Eq. (2), the null

functional being represented by an arbitrary entire function a(k).

For a solution to the homogeneous equation

f 1 2 i
d

dx 2 c Ã(x) 5 0 (13)
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we write

f (k) c (k) 5 a(k)

that is,

c (k) 5 f 2 1(k)a(k) (14)

Then replacing in Eq. (6), we obtain

c Ã(x) 5 # G

dk f 2 1(k)a(k)eikx (15)

In the case where the singularities of f 2 1 are concentrated on the real axis,

the path G can be deformed to get

c Ã(x) 5 #
1 `

2 `

dk [ f 2 1(k 1 i0) 2 f 2 1(k 2 i0)]a(k)eikx (16)

To solve the inhomogeneous equation

f 1 2 i
d

dx 2 c Ã(x) 5 x Ã(x) (17)

where x Ã(x) is a given well-behaved function, we write

f (k) c (k) 5 x (k) 1 a(k)

c (k) 5 f 2 1(k) x (k) 1 f 2 1(k)a(k) (18)

where x Ã(x) 5 * G dk ( x (k) 1 a(k)) exp ikx 5 * G dk x (k) exp ikx. The last

term in Eq. (18) can be recognized as a general solution to the homogeneous

equation (13).

Now, we would like to comment on the composition properties of the

pseudo-differential operators we defined. Suppose we want to solve Eq. (13).
If we apply to both members the operator g( 2 i d/dx), we obtain

g 1 2 i
d

dx 2 F f 1 2 i
d

dx 2 c ÃG 5 0 (19)

The square bracket is a solution to the homogeneous equation for g.

Accordingly,

f 1 2 i
d

dx 2 c Ã(x) 5 # G

dk g 2 1a(k)eikx



3022 Barci et al.

Now we have an inhomogeneous equation for c Ã, whose solution is

c Ã(x) 5 # G

dk f 2 1(k)g 2 1(k)a(k)eikx 1 # G

dk f 2 1(k)b(k)eikx (20)

The second term is a general solution to Eq. (13); of course, the set of

solutions to Eq. (19) contains the space of solutions to Eq. (13). On the other
hand, if we define the composition of two operators associated with f (k) and

g(k) to be an operator g( 2 i d/dx) + f ( 2 i d/dx) associated with f (k)g(k), the

solutions to the equation

F g 1 2 i
d

dx 2 + f 1 2 i
d

dx 2 G c 5 0 (21)

are given by

# G

dk f 2 1(k)g 2 1(k)a(k)eikx (22)

Then, we see that only in the case where g( 2 i d/dx) is associated with an

entire function g(k) [for example, in the case of a local operator g( 2 i d/dx)]

can we choose the entire function a(k) to be g(k) times an entire function,

to conclude that the space of solutions to (21) contains the space of solutions

to (13). This is in contrast with the properties (8) of the fractional derivatives,

which lead to a trivial space of solutions to the associated homogeneous
equations.

Finally, to see the connection with the fractional derivative, we can

apply the pseudo-differential operator ( 2 i d/dx) a to a function g+ (g 2 ) that

vanishes for x , 0 (x . 0). According to (6), the representing function c +(k)

[ c 2 (k)] is zero for Im k . 0 (Im k , 0). Then, we have

g+(x) 5 # G

dk c +(k)eikx 5 2 # Im k , 2 r

dk c +(k)eikx 5 2 # R

dk c +(k 2 i0)eikx

(23)

and

g 2 (x) 5 # G

dk c 2 (k)eikx 5 # Im k . r

dk c 2 (k)eikx 5 # R

dk c 2 (k 1 i0)eikx

(24)
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Therefore

1 2 i
d

dx 2
a

g 6 5 # R

dk k a c 6 (k)eikx

5 7 # R

dk (k 7 i0) a c 6 (k 7 i0)eikx

5 7 ^(k 7 i0) 2 a * g 6 5 7 2 p e 7 i( p /2) a x 2 a 2 1
6

G ( 2 a )
* g 6 (25)

Up to a factor, Eq. (25) contains Gelfand’ s fractional derivative definitions

(7) and (9) which are valid over functions g+, g 2 that vanish for x , 0, x .
0, respectively.

4. LORENTZ INVARIANT PSEUDO-DIFFERENTIAL
OPERATORS

In this section we examine some nonlocal functions f (N) of N 5 - 2
0 2

-
- 2, where

-
- 2 is the (d 2 1)-dimensional Laplacian operator.

The ultradistributions, Eq. (2), depend now on a (d 2 1)-dimensional

vector
-

k as parameter c (k0) ® c (k0,
-

k ).
The Fourier transform of Eq. (6) gives

c Ã(x0,
-

k ) 5 # G

dk0 c (k0,
-

k )eik0x0 (26)

With the usual Fourier transform in the space of the parameters
-

k , we obtain

c Ã(x) 5 c Ã(x0,
-

x ) 5 #
1 `

2 `

d
-

k c Ã(x0,
-

k )e 2 i
-

k
-

x (27)

We define the operation f (N) on c Ã(x) by

f (N) c Ã(x) 5 # d
-

k f ( - 2
0 1

-
k 2) c Ã(x0,

-
k )e 2 i

-
k

-
x (28)

and [cf. Eq. (11)]

f ( - 2
0 1

-
k 2) c Ã(x0,

-
k ) 5 # G

dk0 f ( 2 k2
0 1

-
k 2) c (k0,

-
k )e 1 ik0x0 (29)

We can now solve the homogeneous (d-dimensional) equation

f (N) c Ã(x) 5 0 (30)
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According to (28), Eq. (30) implies

f ( - 2
0 1

-
k 2) c Ã(x0,

-
k ) 5 0

Due to (29), we have for the representing functions

c (k0,
-

k ) 5 f 2 1( 2 k2
0 1

-
k 2)a(k0,

-
k ) (31)

where a(k0,
-

k ) is an arbitrary entire function of k0, for any value of
-

k .

From (26) and (31) we get

c Ã(x0,
-

k ) 5 # G

dk0 f 2 1( 2 k2
0 1

-
k 2)a(k0,

-
k )eik0x0 (32)

If the singularities of f 2 1( 2 k2
0 1

-
k 2) (cuts and poles) lie on the real k0-axis,

the integration in (32) can then be taken along the real axis, yielding

c Ã(x0,
-
x ) 5 # d

-
k #

1 `

2 `

dk0 D ( f 2 1)a(k0,
-

k )ei(k0x0 2
-

k ,
-

x ) (33)

where D is the discontinuity at the singularities:

D ( f 2 1) 5 f 2 1( 2 (k0 1 i0)2 1
-

k 2) 2 f 2 1( 2 (k0 2 i0)2 1
-

k 2)

5 2iSgk0 s (k2) (34)

Here, we have also defined s (k2), the weight function associated with the
k2-mode.

For f (z) 5 (z 1 m2) a , determined by a cut along the negative real z-
axis, running from 2 ` to 2 m2, the analytic function of k0, f 2 1 5 ( 2 k2

0 1
-

k 2 1 m2) 2 a , presents a cut along the real k0-axis running from 2 ` to k0 5
2 v and another twin cut from k0 5 1 v to 1 ` ( v 5 1 !

-
k 2 1 m2). In this

case, the discontinuity function (34) is given by

D ( f 2 1) 5 [ 2 k2
0 1 v 2 2 i0Sg(k0)]

2 a 2 [ 2 k2
0 1 v 2 1 i0Sg(k0)]

2 a

5 Sg(k0)[( 2 k2
0 1 v 2 2 i0) 2 a 2 ( 2 k2

0 1 v 2 1 i0) 2 a ]

Using

(k 1 i0) 2 a 5 k 2 a
1 1 e 2 ik a k 2 a

2

(k 2 i0) 2 a 5 k 2 a
1 1 eik a k 2 a

2 (35)

we get

D ( f 2 1) 5 2i sin( p a )Sgk0( 2 k2
0 1 v 2) 2 a

2 5 2i sin( p a )Sgk0(k
2
0 2 v 2) 2 a

1

(36)



Lorentz-Invariant Pseudo-Differential Wave Equations 3025

For a 5 1, Eq. (30) is Klein±Gordon equation, the distribution (k2
0 2

v 2)+
2 a has a pole (ref. 22, Ch. 3, §3.4) while sin( p a ) is zero; therefore, in

this case, the weight function (36) comes from the residue of (k2
0 2 v 2)+

2 a at
a 5 1, that is, d (k2

0 2 v 2) 5 d (k2 2 m2). Then, for a ® 1, Eq. (36) gives

D ® const ? d (k2 2 m2), which is the well-known invariant free wave solution.

For a fractional a , the weight function gives a continuum of modes with

k2 $ m2. In this sense we can say that (36) represents modes corresponding

to a continuum of masses k2 5 m 2 $ m2. the free wave d (k2 2 m2) concentrated

on k2 5 m2 changes for fractional a into (k2 2 m2)+
2 a , which is spread from

k2 5 m2 to k2 ® ` (see also ref. 23).

Note that, according to Section 3, in the case of the nonlocal equation

N1/2 c Ã5 0, for example, it is not possible to conclude (applying N1/2) that c Ã

must be a solution to N c Ã5 0, implying just zero mass modes; instead, the

solution contains a continuum of massive modes, with weight , (k2
+)

2 1/2.

Let us now find Green functions for the fractional Klein±Gordon
equation:

(N 1 m2) a GÃ(x) 5 d (x) (37)

As the pseudo-differential wave equation (N 1 m2) a c Ã(x) 5 0 has nontrivial

solutions, this Green function is not uniquely determined, as occurs in the

case of the local operators. This is in contrast to the usual approach to

fractional wave equations where the solution to the homogeneous equation

is trivial and the Green function is uniquely determined.
A particular solution to (37) is

GÃ(x0,
-

k ) 5
1

2 # dk [( 2 k2 1 m2 2 i0) 2 a 1 ( 2 k2 1 m2 1 i0) 2 a ]eikx (38)

This is the principal value (or ª Wheelerº ) Green function for the fractional
Klein±Gordon equation.

The two terms in the square bracket of (38) are, respectively, the causal

and anticausal Green functions for the fractional pseudo-differential wave

equation. For a 5 1 they are the usual Feynman propagator and its complex

conjugate. The Fourier transforms of those two terms can be found in ref.
22, Ch. 3, §2.6.

Other Green functions can be found by adding to (38) solutions to the

homogeneous equation. We can add together (33) (with a 5 6 1/2) and (38)

to get

GÃ6 (x0,
-

x ) 5 # dk [(k2 2 m2) 2 a
2 1 e 6 i p a Sgk0(k2 2 m2) 2 a

1 ]eikx (39)

When m 5 0, the two terms of (38) and the two Green functions of (39)

coincide with the four Lorentz-invariant propagators for the fractional wave



3026 Barci et al.

equation found in ref. 15; the Feynman (causal) function coincides with the

propagator used in ref. 7 to regularize the matrix elements of quantum

electrodynamics.

5. SOLUTIONS TO THE HOMOGENEOUS EQUATIONS IN
EFFECTIVE QED

Now we discuss the nonlocal field equations we have defined in the

context of effective electromagnetism.

The usual effective action, obtained by integration of the (quantum)

fermionic degrees of freedom, when written in Minkowski space leads to

effective (in± out) field equations which are neither real nor causal. On the

other hand, a ª close time pathº formalism can be considered that produces
(real and causal) effective field equations for the expectation values of the

hermitian Heisenberg field.

For example, this formalism leads to the equation for the in± in vacuum

expectation values of the electromagnetic field [27, 10]:

H(N) - m F m n 5 J n
clas, H(N) 5 1 1 2

e2

p 2 F(N) 2 (40)

where F(N) comes from the one-loop vacuum polarization tensor,

F(N) 5
1

8 #
1

0

dt (1 2 t2) ln F m2 1 1/4(1 2 t2)N

m 2 G (41)

and the nonlocal operator in (40) is defined by means of a retarded prescrip-

tion, that is, when evaluating H(N)) - m F m n in k-space, the cut of F( 2 k2), must

be avoided by means of a retarded path. jclas is a classical charged source.

Note that the kinetic operator (40) itself and not just its inverse is defined

by means of a retarded prescription, which leads to a uniquely defined

(classical) causal relation between the classical source and the in± in vacuum
expectation value of the electromagnetic field; this relationship comes from

the (quantum) causal Feynman propagator defining QED.

Now, we would like to consider the (nonlocal) effective equation (40)

(which includes quantum fermion corrections) in a similar way to the classical

(local) electromagnetic equation, where the retarded prescription is not

included a priori in the kinetic operator (but is imposed a posteriori by
means of a causality argument). In particular, such an equation could also

be quantized.

Then, instead of considering these equations with an operator defined

by a retarded prescription, we could consider them in the sense defined in
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(28) and (29), where the nonlocal operator has a closer analogy with the

local case, accepting a nontrivial set of solutions to the homogeneous effec-

tive equations.
Using our definition for H(N), we can solve (in the Lorentz gauge) the

homogeneous effective equation

H(N)NA m 5 0 (42)

From (33) we obtain

A m (x) 5 # d
-

k #
1 `

2 `

dk0 D (( 2 k2H ) 2 1)a m (k0,
-

k )eikx (43)

where a m (k0,
-

k ) 5 a m ( 2 k0, 2
-

k ) for A m to be a real field, and we have the

gauge condition, k ? a(k) 5 0.

The discontinuity function is

D 1 1

2 k2H( 2 k2) 2
5 i p Sgk0 d (k2) F 1

H( 2 k2 1 i0)
1

1

H( 2 k2 2 i0) G
1 Sgk0 P 1 1

k2 2 F 1

H( 2 k2 1 i0)
2

1

H( 2 k2 2 i0) G
5 2iSgk0 F p

5(0)
d (k2) 1

1

k2

(

52 1 (2 G
5(0) 5 1 2

e2

12 p 2 ln
m2

m 2 (44)

where 5 and ( are the real and imaginary parts of H( 2 k2 2 i0), respectively,

and we used the fact that [because of the unitarity cut of F( 2 k2)] the imaginary
part of H( 2 k2 2 i0) is zero for k2 , 4m2.

Note that the field modes in the continuum, with mass parameter m 2 $
4m2, coming from the second term in (44) cannot be associated with asymp-

totic free wave solutions representing a particle with mass m 2, that is, there

is no solution such as exp ikx, k2 5 m 2; the function a m (k0,
-

k ) in (43) cannot

be a Dirac delta, as it must be a function analytic in k0. On the other hand,
the d (k2)-function in the first term gives the usual free wave solutions exp

ikx, k2 5 0, representing the photon.

Note also that the weight function [bracket in (44)] is positive definite,

as the imaginary part
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( 5 e2/8 p #
1

0

dt(1 2 t2) u ((1 2 t2)k2 2 4m2)

is positive; it is related (via the optical theorem) with the total cross section to

produce a fermion pair (which is of course positive). This is in contrast with

the caseof a higher order fieldequation, where the weight function isnot positive

definite. For instance, when f (N) 5 (N 1 m2
1)(N 1 m2

2), the weight function is

1/(m2
2 2 m2

1)[ d (k2 2 m2
1) 2 d (k2 2 m2

2)]. This indefiniteness finally leads to
an indefinite conserved energy, that is, the instability problem associated with

higher order field equations [29]. Then, unlike a higher order equation, the

nonlocal effective equation (42) does not present instability problems (as ex-

pected), as the underlying (local) theory is physically well defined.

Finally, we could quantize the classical system represented by equation

(42). This can be done by imposing Heisenberg’ s equation on the on-shell
field (43) to obtain the a-commutators and by imposing the gauge condition

on the physical modes - ? A 2 ) phys & 5 0, where A 2 is the annihilation part of

the electromagnetic field [23].

The obtained propagator, computed as the vacuum expectation value of

the T-product for two nonlocal fields, is

i h m n # G F

dk
eikx

( 2 k2H(k2))
(45)

that is, the usual electromagnetic Feynman’ s propagator, including the virtual
fermion self-energy.

6. DISCUSSION

Nonlocal kinetic operators are currently used in many problems of

theoretical physics. A general Lorentz invariant kinetic operator is given by

a function f (N), where f ( 2 k2) is an analytic function of k0, with a given set

of singularities (cuts).

Usually, in order to define these operators, a prescription to avoid these
singularities is considered in an analogous way to Gelfand’ s fractional deriva-

tive definition [22]. In that context, given a nonlocal operator, the associated

nonlocal homogeneous equation has no nontrivial solutions, and therefore

the associated Green function is uniquely determined.

In this paper, we presented a different mathematical approach, defining

general nonlocal pseudo-differential operators acting on a space of ultradistri-
butions. This is a natural extension, implying a nontrivial set of solutions to

the associated nonlocal homogeneous equations.

Our method is based on defining the space z of ultraanalytic functions

(see Section 2). Its dual space z 8 contains the propagators appearing in
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perturbative quantum field theories. It is also flexible enough to allow for

them a representation in terms of ultradistributions which is both simple

and general.
The Fourier-transformed species z Ãand z Ã8 translate the functions of z

and z 8 into functions of coordinates where the pseudo-differential operators are

supposed to act. In this way we can define nonlocal operations on (generalized)

functions of the coordinates.

We have shown the connection with the operators N a defined and dis-

cussed in ref. 15 and with the fractional derivative of ref 22. We also exhibited
the corresponding solutions to the homogeneous equations. As a consequence,

we are able to show that the free solutions to the wave equation or the

Klein±Gordon equation, with their sharp masses, are ª spreadº when the

equations are fractional into a superposition of a continuum of massive modes

with support in the interior of the light cone.

Furthermore, the causal propagators for the fractional equations are seen
to coincide with the analytically regularized propagators introduced in ref.

7. It is then possible to interpret this regularization method as the matrix

elements one would write for a nonlocal theory having no ultraviolet diver-

gences. The usual infinities appear as poles for the local limit a ® 1.

We also analyzed, in the frame of our extended approach, the (nonlocal)
effective equation of electromagnetism obtained when integrating over the

fermionic degrees of freedom. The general solution to the homogeneous

(effective) Maxwell equation contains a zero mass field, which represents

the photon, and an additional term representing a continuum of massive

modes. The modes in the continuum cannot be associated with ª sharp massº

free waves (see also ref. 24) representing massive particles. The quantization
of the nonlocal effective field leads to Feynman’ s photon propagator including

the quantum corrections due to virtual fermions.

It is interesting to note that, unlike the higher derivative case, the weight

function for the nonlocal effective theory is positive definite. Then, the theory

does not present instability problems, as expected, as the underlying local

theory is physically well defined.
We see than that with the chosen procedures we have convenient tools

with which we can handle different pseudo-differential nonlocal problems.

The scheme also provides a formal base for the quantization of nonlocal field

theories [23], as those obtained in the context of bosonization in higher

dimensions.
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